Multi-solitons for nonlinear Klein–Gordon equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Solitons and Periodic Wave Solutions for Coupled Nonlinear Equations
In this work we apply the tanh-coth method and the tan-cot method to study some nonlinear coupled equations. Four nonlinear coupled equations that appear in a variety of scientific applications are investigated. We derive soliton, singular solitons and periodic wave solutions for these coupled equations. The obtained results show that these four coupled equations reveal richness of explicit sol...
متن کاملGap Solitons in Periodic Discrete Nonlinear Schrödinger Equations
It is shown that the periodic DNLS, with cubic nonlinearity, possesses gap solutions, i. e. standing waves, with the frequency in a spectral gap, that are exponentially localized in spatial variable. The proof is based on the linking theorem in combination with periodic approximations. Mathematics subject classification: 35Q55, 35Q51, 39A12, 39A70, 78A40
متن کاملBilinearization of Coupled Nonlinear Schrödinger Type Equations: Integrabilty and Solitons
Considering the coupled envelope equations in nonlinear couplers, the question of integrability is attempted. It is explicitly shown that Hirota’s bilinear method is one of the simple and alternative techniques to Painlevé analysis to obtain the integrability conditions of the coupled nonlinear Schrödinger (CNLS) type equations. We also show that the coupled Hirota equation introduced by Tasgal...
متن کاملInstabilities of Multihump Vector Solitons in Coupled Nonlinear Schrödinger Equations
Spectral stability of multihump vector solitons in the Hamiltonian system of coupled nonlinear Schrödinger (NLS) equations is investigated both analytically and numerically. Using the closure theorem for the negative index of the linearized Hamiltonian, we classify all possible bifurcations of unstable eigenvalues in the systems of coupled NLS equations with cubic and saturable nonlinearities. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum of Mathematics, Sigma
سال: 2014
ISSN: 2050-5094
DOI: 10.1017/fms.2014.13